
Software-defined Vehicle

Vehicle OS: Software Platform and
Ecosystem for All Vehicle Domains
Within Software-defined Vehicles, a Vehicle OS addresses the increasing challenges of software

development and integration. One of these challenges is the coexistence of domain-specific

 software solutions that have not been developed in the context of a concrete E/E architecture

but must nevertheless interact seamlessly with it. Vector Informatik shows what characterizes

a holistic Vehicle OS and what role Android plays in this context.

Written by
Dr. Marc Weber
 Andreas Raisch

COVER STORY SOftWArE-dEfInEd VEhIclE

22 www.springerprofessional.com/automotive

Software-defined Vehicle

g Many vehicle manufacturers are
undergoing a transformation process,
moving away from mechanically domi-
nated vehicles and toward Software-
defined Vehicles (SdV). More and more
functions that can be experienced by
the customer are determined to a large
extent by software and less by mecha n i-
cal or mechatronic components. As
a result, manufacturers have a new
opportunity to equip their vehicles
with improved or new functions over
the entire life cycle by means of soft-
ware updates, thus opening up new
business areas.

In order to exploit the full potential,
three prerequisites must be met for a SdV:
 – The E/E architecture must support or
natively provide for the decoupling of
mechatronic components, computing
power (hardware, HW) and software
(SW). Therefore, most future vehicle
generations will be based on a central/
zonal architecture with three ECU cat-
egories: High-Performance Computer
(HPC), zonal integration nodes and
sensor/actuator ECUs, FIGURE 1.

 – HPCs and zonal integration nodes
require high-performance micropro-
cessors and microcontrollers with
appropriate automotive qualification.
Such chips are already available, and
their computing power increases with
each generation.

 – A powerful software platform with
associated ecosystem, called Vehicle
OS, is necessary to meet the increasing
challenges of software development
and integration. This is especially true
for HPCs and zonal integration nodes,
which often have a heterogeneous
HW/SW architecture and run dozens
to hundreds of SW applications.

VEHICLE OS

Since the automotive industry currently
uses and interprets the term Vehicle OS
– also known as Car OS and Auto motive
OS – inconsistently, the following defini-
tion is proposed:

A Vehicle OS is a development and
operating platform for software appli-
cations and services of all vehicle do-
mains. It consists of a base layer and
a software factory and supports
 collaboration between companies.
 – The Vehicle OS runtime environment
is called base layer. Its instantiation
may differ from execution platform to
execution platform (microcontroller,
microprocessor and backend).

 – As Vehicle OS infrastructure, the soft-
ware factory supports and automates
the development, integration and roll-
out of base layer and SW applications.

 – Close and agile collaboration between
vehicle manufacturers and suppliers
is the key to success and is being
 promoted accordingly.

A Vehicle OS addresses ECUs with a high
software content, above all HPCs and
zonal integration nodes, as well as the
associated backend. Vehicle manufactur-
ers increasingly consider these areas as
core elements of their value chain and
largely assume control and responsibility
for the Vehicle OS used.

BASE LAYER

There are two basic kinds of the base
layer: one for in-vehicle ECUs (in-vehi-
cle base layer) and one for the associated
backend (backend base layer). The focus
in the following is on the in-vehicle base
layer. It consists of software modules on

WrIt tEn BY

Dr. Marc Weber
is head of Solution Management for

the product line Embedded
 Software & Systems at Vector

 Informatik in Stuttgart (Germany).

Andreas Raisch
leads a team in pre-development for
embedded software that deals with

domain-specific ecosystems and
development methods in the area
of Vehicle OS at Vector Informatik

in Stuttgart (Germany). FIGURE 1 Central/zone architecture (© Vector Informatik)

© Vector Informatik

Written by
Dr. Marc Weber
 Andreas Raisch

ATZ electronics worldwide 05|2023 23

several architectural levels. From HW-
related infrastructure software, through
operating systems (OS) and middleware
solutions, to vehicle-wide defined system
functions, FIGURE 2. This superset of soft-
ware is available for the entire scope of
the Vehicle OS. When instantiating the
base layer on a specific ECU, only the
required modules are considered.

At the operating system and middle-
ware level, the Autosar Classic Platform
is the established automotive standard
for microcontroller software and the
associated base layer portion is corre-
spondingly homogeneous. For reasons
of symmetry, the OS is shown as a sepa-
rate component in FIGURE 2. The situation
is different for microprocessors. Here,
several POSIX-based operating systems
are usually used in combination with
different middleware implementations.
The reasons for this are the special
requirements regarding runtime envi-
ronment and infrastructure software as
well as different development processes
in the respective vehicle domains. For
this reason, specific software solutions
are used in some cases, especially in the

areas of in-vehicle infotainment (IVI)
and ADAS/AD.

In contrast to the Autosar Classic
 Platform, the Autosar Adaptive Platform
does not define its own operating sys-
tem, instead it uses established POSIX
interfaces. In addition to the ECU-inter-
nal data exchange via zero-copy mecha-
nism and the efficient connection of
communication protocols such as
SOME/IP, the middleware supports fur-
ther automotive use cases, such as diag-
nostics and network management. In its
definition, special emphasis was and is
placed on functional safety and cyber-
security, without neglecting the high
re quirements regarding data throughput.
Due to these characteristics, the Autosar
Adaptive Platform has established itself
as middleware for ADAS/AD applications
and in other vehicle do mains such as
body and comfort. In the infotainment
domain, software solutions inspired by
or derived from consumer electronics are
increasingly used. Due to their origin
and orientation, vehicle-specific integra-
tion is often necessary. A prominent
example of this is the Android Automo-

tive Operating System, which will be
discussed later in more detail.

SOFTWARE FACTORY

SW development for HPCs and other
integration ECUs is generally no longer
carried out according to the classic
V-model but based on agile methods
such as development and operations
(DevOps) and close cooperation between
vehicle manufacturers and suppliers.
The basis for this is feature-based
de velopment of the application soft-
ware with a large number of short-
lived source code branches. This
makes the merging of these branches
and the associated rapid verification of
the source code changes made particu-
larly important. Even in smaller ECU
projects, the integration of application
software and base layer is time-consum-
ing. The effort required increases expo-
nentially with the number of applica-
tions to be integrated, which are often
developed at different times in geograph-
ically distributed development centers.
A manual approach is therefore no lon-

FIGURE 2 Architecture and building blocks of the base layer (© Vector Informatik)

COVER STORY SOftWArE-dEfInEd VEhIclE

24 www.springerprofessional.com/automotive

ger practicable. The software factory
ad dresses this challenge by automating
the integration process as completely
as possible, FIGURE 3. Some of the in -
formation required for this is already
available in the system design, which
is usually in an Autosar exchange for -
mat (ARXML). Missing integration
condi tions or integration instructions,
such as scheduling information or other
de pendencies on the specific base layer
configuration, can be easily added in
a human-read able format.

The software factory is based on
 common DevOps tools, such as GitHub
and GitLab, and supplements them with
automotive specifics, such as automated
control of configuration tools and spe-
cialized integration pipelines. In analogy
to the base layer, the software factory
must take into account various standards
as well as existing ecosystems and inter-
act with them in order to fully automate
the integration process.

ANDROID

Android was developed as an operating
system for smartphones. This class of
devices is equipped with a graphical,
touch-sensitive interface and has exten-
sive audio and video functions. Smart-
phones can handle typical interfaces
from consumer electronics and mobile
communications and are also capable

of dynamically adding and exchanging
applications (apps). Android offers apps
a standardized, largely hardware-inde-
pendent and easy-to-use runtime envi-
ronment as well as a suitable ecosystem
with software development kit (SDK),
emulator, documentation and examples.
Based on this, a large, worldwide app
developer community has been estab-
lished. The extensible core of the solu-
tion is the Android Open-Source Proj-
ect (AOSP) provided by Google.

Since the requirement profiles of IVI
systems have a high degree of congru-
ence with those of smartphones, the
use of Android for this domain in the
vehicle is obvious. When using AOSP,
a vehicle manufacturer has the choice
of developing important functions such
as the map service, voice assistant and
app store itself or licensing them from
Google as Google Automotive Services
(GAS). There are already various AOSP-
based IVI systems in the field, with and
without GAS.

ANDROID AUTOMOTIVE OS

Purely AOSP-based IVI systems require
a greater development effort until they
are ready for series production. Google
has recognized this and introduced
enhancements with the Android Auto-
motive Operating System (AAOS) that
significantly facilitate use in the vehi-

cle. One example of this is the camera
hardware abstraction layer, which en -
ables the rear-view camera image to
be displayed early in the boot process.
Another example is the vehicle hard-
ware abstraction layer (VHAL), which
represents a vehicle property model
de signed for IVI apps. Properties pro-
vided include battery size and state of
charge, as well as target and actual inte-
rior temperatures. Equipped with the
appropriate rights, apps can change the
setpoints, which enables, among other
things, control of the air conditioning
system via the graphical user interface.
Since the IVI system is the central con-
trol element for many vehicle functions,
the VHAL is usually extended on a vehi-
cle manufacturer-specific basis and
hence includes more properties than
are provided by Google as standard.

The VHAL allows apps to be devel-
oped with a high degree of reusability.
In its current implementation, it pro-
vides a suitable decoupling of differ-
ent vehicles and their respective fur-
ther development in the IVI system
but requires vehicle-specific adaptation
efforts when integrating AAOS into a
particular ECU. The connection to the
vehicle network can be established
in different ways, for example via a
dedicated ethernet interface, an inter
partition/inter processor communica-
tion (IPC), or a mixture of these.

FIGURE 3 Workflows and tools of the software factory (© Vector Informatik)

ATZ electronics worldwide 05|2023 25

VHAL GENERATION

Since the in-vehicle communication
between ECUs is usually described
according to Autosar methodology and
in ARXML, this information can be used
for an automated linking of the signals
and services provided on the vehicle
side with the corresponding VHAL prop-
erties. It should be considered here that
Android apps expect VHAL-compliant
behavior, but other considerations are
paramount when modeling vehicle com-
munication. Therefore, signals and ser-
vices cannot necessarily be mapped
one-to-one to VHAL properties. In addi-
tion, the behavior in critical operating
phases must be taken into account, for
example during system start-up or
during a software update. An approp-
riate solution that translates between

the communication elements modeled
in ARXML and the expected VHAL
behavior simplifies the initial integra-
tion. Furthermore, it helps to signifi-
cantly reduce the adaptation effort for
future updates of AAOS or for a changed
vehicle communication, FIGURE 4.

CONCLUSION

As a powerful software platform with
associated ecosystem, a Vehicle OS is a
prerequisite for the realization of SdVs.
Autosar plays an important role in both
the embedded runtime environment
and the associated workflows, however
it does not represent a complete solution
for all domains. Specific requirements
in the vehicle domains require different
software solutions and lead to a hetero-
geneous overall system. This results in

new challenges for system integration,
such as the connection of the Android
Automotive OS to the in-vehicle commu-
nication infrastructure. In this case,
however, the integration effort can be
minimized by generating the VHAL
based on existing Autosar system
design information.

Vector is continuously expanding
its Vehicle OS product portfolio with
embedded software modules and tools
that ensure the interoperability of dif-
ferent solutions and enable or simplify
their integration at system level. Exam-
ples of this are the signal-/service-to-
VHAL adapter for the efficient connec-
tion of AAOS to the vehicle network
and the support of AAOS as an exe-
cution environment for the Autosar
 Adaptive Platform implementation
Microsar Adaptive.

FIGURE 4 Android Automotive OS
VHAL with generated adaptation
layer to in-vehicle communication
(© Vector Informatik GmbH)

COVER STORY SOftWArE-dEfInEd VEhIclE

26 www.springerprofessional.com/automotive

ATZ electronics worldwide 05|2023 27

THE BEST FOR YOUR TEAM. THE WORLD’S LEADING
AUTOMOTIVE MAGAZINES IN ONE PACKAGE.

 Access to the online specialist articles archives

 Keyword Search in the e-magazines

 Interactive animations and editorial videos

SuppliersOEMs UniversitiesService
providers

WATCH OUR VIDEO AND GET TO LEARN MORE:
www.atz-magazine.com/automotive-package

ISSN (Online) 2524-8774

CONSTRUCTION MACHINES AND VEHICLES

Electrification and Digitalization
POWERTRAIN
Hybrid Drive Concept for
Off-highway Applications

INDUSTRIAL TRUCKS
Intelligent Passenger Assistant
for Counterbalanced Trucks

SIMULATION
High Speed Components
for Hydraulic Power Supply

/// INTERVIEW Ronald Kruth [AVL] /// GUEST COMMENTARY Arndt Schumann [TriboPlast]

01 March 2019 | Volume 12

W O R L D W I D EW O R L D W I D EW O R L D W I D E

heavydutyheavyduty
ON- AND OFFHIGHWAY COMMERCIAL VEHICLES

ISSN (Online) 2524-8804

07-08 July-August 2019 |

Volume 14

SEMICONDUCTORS

Failsafe Electronics
Will Pay off

VEHICLE COMPUTERS
Require Fundamental Changes
in E/E Architectures

800-V TECHNOLOGY
Offers Performance Benefits
While Increasing Demands

AUTONOMOUS DRIVING
Places New Challenges
on the Driver

electronics

/// INTERVIEW Frank Schütte [dSpace] /// GUEST COMMENTARY Peter Gresch [PGUB Management Consultants]

W O R L D W I D E

ISSN (Online) 2192-9076

09 September 2019 | Volume 121

AUTOMATED DRIVING

Driverless on the Road to the Future
OBJECTIFICATION
 of Assistance Systems
with Humans at the Center

WHEEL BEARING DAMAGE
 during Car Transportation
on a Truck

ROAD ILLUMINATION
 for Object Detection under
Peripheral Vision

/// INTERVIEW Jochen Tüting [Chery Europe] /// GUEST COMMENTARY Hans-Hermann Braess

W O R L D W I D E

800-V TECHNOLOGY
Offers Performance Benefits
While Increasing

/// GUEST COMMENTARY

Electrification and Digitalization
INDUSTRIAL TRUCKS
Intelligent Passenger Assistant

Counterbalanced

/// GUEST COMMENTARY

Electrification and Digitalization
INDUSTRIAL TRUCKS
Intelligent Passenger Assistant

Counterbalanced Trucks

SIMULATION
High Speed Components
for Hydraulic Power Supply

/// GUEST COMMENTARY Arndt Schumann [TriboPlast]

VEHICLE COMPUTERS
Require Fundamental Changes
in E/E Architectures

800-V TECHNOLOGY
Offers Performance Benefits
While Increasing

/// INTERVIEW Frank Schütte [dSpace] /// GUEST COMMENTARY

ISSN (Online) 2192-9114

SUPERCHARGING

Turbochargers as Efficiency BoostersSINTERED MATERIALS Made of Iron for the Reduction of Cobalt Consumption

ROTARY SHAFT SEALS Specially Designed for Use in High-speed Electric Motors

FUEL ADDITIVES
 for Biodiesel to Increase Oxidation Stability/// INTERVIEW Victor Oliveras Merida and Mark Hoffmann [Audi] /// GUEST COMMENTARY Frank Atzler [TU Dresden]

EL ECT RIC DRIV ES | H Y BRID DRIV ES | COMBUST ION ENG INES

10 October 2019 | Volume 80

YOU
GET:

